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Measurements of the fine-structure of the energy spectrum of the velocity 
fluctuations were made in the transition region of a two-dimensional wake. Line 
and continuous spectra were determined separately with a high-selectivity band- 
pass filter. The transition was initiated by an external sinusoidal sound. The 
sound-induced periodic fluctuation and the natural random fluctuation in the 
wake were added and a system of line and continuous spectra was formed. 
Higher harmonics of the periodic component were produced by the nonlinear 
interaction. As a result of the interaction between discrete and continuous com- 
ponents, a continuous spectrum was generated a t  low wavenumbers. A simple 
model for the interaction is proposed. The evolution of the spectrum is explained 
by three fundamental rules concerning the nonlinear interaction between spectral 
components: (i) the growth of a spectral component is suppressed by the presence 
of another strong component, (ii) mutual interaction is more effective when the 
amplitudes of interacting components are closer, and (iii) a stronger interaction 
takes place between components of closer wavenumbers. The randomization of 
the regular fluctuation is properly expressed as the growth of the ‘randomness 
factor’, the ratio of the energy of the random components to the total fluctuation 
energy. 

1. Introduction 
The laminar-turbulent transition of free shear flows initiated by a small 

amplitude disturbance consists of three elementary processes. The first is the 
selective amplification of the disturbance. If the wavenumber of the disturbance 
is appropriate, the disturbance grows exponentially in the flow direction. So 
long as the amplitude of the disturbance is small, there are no interactions 
between fluctuations of different wavenumber. Experimental results on the 
growth rate, phase speed and other properties of small amplitude fluctuations 
are in good agreement with predictions of linearized stability theory (Sat0 & 
Kuriki 1961). The second process is the nonlinear interaction of the amplified, 
large amplitude fluctuations. It leads to the reduction of the growth rate, the 
production of harmonics and the distortion of the mean-velocity distribution. 
If there are two fluctuations of different wavenumber, components whose wave- 
numbers are the sum and difference of the two wavenumbers are generated. 
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Although there are many experimental results on the nonlinear interactions in 
various flow fields (Klebanoff, Tidstrom & Sargent 1962; Sat0 1970; Miksad 
1973, 1973), existing nonlinear theories explain only a part of them. The last 
and most significant process in the transition is the randomization. The nonlinear 
interaction of various fluctuations is a deterministic process; in other words, if 
interacting fluctuations are periodic, the periodicity is not destroyed by the 
interaction. On the other hand, turbulence is random. Therefore, the randomiza- 
tion of periodic fluctuations must take place as the final process of transition. 

The randomization process is most appropriately described in terms of the 
evolution of the energy spectrum. If the initial disturbance is a fluctuation with 
a single frequency, the corresponding energy spectrum is a single line spectrum. 
The intensity of the line spectrum increases exponentially in the linear region of 
transition and the nonlinear interaction results in the production of harmonic 
line spectra. The spectrum of the turbulent fluctuation, on the other hand, is 
continuous. Therefore, the randomization process corresponds to the evolution 
from the line spectra to the continuous spectrum. An example of the broadening 
of discrete mode frequencies was given by Lashinsky (1968) both theoretically 
and experimentally. But so far there is no general theory for the randomization. 
Existing experimental results on the energy spectra in the transition region are 
not satisfactory, because in these experiments line and continuous spectra have 
not been separated clearly. For the quantitative discussion of the randomization 
process we have to know the ‘he-structure’ of spectra; namely, line and con- 
tinuous spectra must be separated with sufficient accuracy. This is the reason 
why we started measurements of the fine-structure of energy spectra in the 
transition region. The present paper includes experimental results in the two- 
dimensional wake behind a flat plate and discussions on the randomization 
process. 

2. Experimental arrangement and procedure 
Wind tunnel, hot-wire anemometer and band-pass Jilter 

The whole experiment was carried out in the 60 x 60 cm Low-Turbulence Wind- 
Tunnel at  the Institute of Space and Aeronautical Science, University of Tokyo. 
A thin aerofoil (of chord 30cm, span 60cm, maximum thickness 3mm and 
thickness at the trailing edge N 0.2 mm) was placed parallel to the uniform flow 
in the test section and a two-dimensional symmetrical laminar wake was gene- 
rated behind the plate. Mean and fluctuating velocities were measured by a 
constant-temperature hot-wire anemometer. Figure 1 illustrates the layout of 
the test section. A loudspeaker at  the exit of the test section was used for intro- 
ducing sound into the wake. The X axis is in the flow direction and the Y axis 
is perpendicular to the plate. Details of the tunnel, the wake-producing plate, 
the loudspeaker, the hot-wire equipment, etc., may be found in a previous paper 
(Sato 1970). The free-stream velocity was fixed a t  10m/s. 

The signal from the hot-wire amplifier was analysed by a band-pass filter. The 
discrimination of line spectra from the continuous part was accomplished by 
a filter of extremely high selectivity. The newly constructed filter employs a 
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heterodyne circuit, whose block diagram is shown in figure 2. The signal from the 
hot-wire amplifier is fed t20 a conventional band-pass filter which is tuned to the 
frequency fl. The selectivity of this filter, defined by fl/Af, Af being the bandwidth 
of 6db attenuation, is about 30. The filtered signal is mixed with a sinusoidal 
signal from a local oscillator of frequency f2 and converted to a signal of frequency 
f o  = fi - f2. The frequency of the second filter is fixed at f o ,  which is around 30 Hz. 
With a large value of flf0 a high selectivity was obtained. The spectrum was 
determined by changing both fl and f2. The attenuation characteristics of the 
whole filter system are - 23 db at  rt 5 Hz, - 29db at  rt 10 Hz and - 44 db at  
rt 40Hz difference from the tuned frequency. This implies that the influence of 
an adjacent strong discrete component on the measurement of a weak continuous 
spectrum is small. Corrections for such an influence were made by using the 
filter characteristics. 

Arti$cial small amplitude Jluctuations 

The root mean square of the longitudinal component of the residual fluctuation 
in the test section was about 0.05% of the free-stream velocity. Although a 
precise measurement of the energy spectrum of the fluctuation was not possible 



512 H .  Sato and H .  Saito 

because of the smallness of the signal, it was ascertained that there was no 
predominant discrete component in the wave form. A so-called natural transition 
was originated by the fluctuation. On the other hand, if we introduce sound of 
a single frequency into the wake, the spectrum of the velocity fluctuation induced 
by the sound is a line spectrum. The mechanism of transition originated by the 
induced fluctuation might be different from that of natural transition. Since the 
amplitude and frequency of the sound-induced fluctuation can be controlled, 
the sound-induced transition is better defined. In  the present experiment a transi- 
tion of this type was investigated in detail. The frequency of the sound was 
600Hz. At this frequency the linear growth rate of the induced fluctuation is 
maximum under the present experimental conditions. 

The reproducibility of the experiment was assured by adjusting the intensity 
of the sound so that the root-mean-square induced velocity fluctuation at  a 
reference point in the wake, S = 10mm, Y = 0.5mm, was 0.5% of the free- 
stream velocity. The level of the natural fluctuation at  this point without sound 
was about 0.05 yo. Since the sound-induced fluctuation in the uniform free stream 
was about 0.005 %, the above-mentioned r.m.6. value of the fluctuation at  the 
reference point is a result of growth by a factor of about 100 in the wake. Although 
sound induces velocity fluctuations everywhere in the flow, the fluctuation 
induced near the trailing edge of the plate grows most. Therefore, the actual effect 
of sound is very localized and we may consider the initial disturbance to exist 
only around the trailing edge. 

3. Experimental results 
Mean jlow 

Distributions of the mean velocity a t  various X stations in the presence of 600 Hz 
sound are shown in figure 3, in which the mean velocity U is normalized by the 
free-stream velocity Ch. The distribution changes from an almost Blasius profile 
a t  X = 5nim to a typical distribution for a turbulent wake at X = 1OOOmm. 
We notice two interesting facts from the figure. One is the decrease of the velocity 
on the centre-line from X = 60 to 120mm in contrast to the expected gradual 
increase to the free-stream velocity. The other is the overshoot of U/U,; namely, 
U exceeds U, at around I’ = k 5 mm at S = 120 mm. These features were found 
previously in natural transition and it was clarified that they resulted from the 
nonlinear interaction between the large amplitude velocity fluctuation and the 
mean flow (Sato 1970). 

Streamwise variations of the velocity U, on the centre-line and the half-value 
breadth b are shown in figure 4. Results in natural transition are added for com- 
parison. In both the natural and sound-induced cases the general trends of the 
streamwise variations are the same. The differences are that sharp increases of U, 
and b take place a t  smaller X in the presence of sound. At large 9, U, and b in 
natural transition are larger. In  the presence of sound, both U, and b remain 
almost unchanged between X = 150 and 6OOmm. This is an indication of the 
establishment of nonlinear equilibrium in the region. 
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FIQURE 3. Mean-velocity distributions with 600 Hz sound. 77, = 10 m/s. A, X = 5 mm; 
v, 9 = 20 mm; 0, S = 40 mm; 0 ,  X = 60 mm; 0, X = 120 mm; ., X = 400 mm; 
v , X  = 1OOOmm. 

Velocity jluctuations 

Distributions of the root-mean-square u fluctuation for sound-induced transition 
are shown in figure 5 .  The fluctuation grows from a small value at X = 5 mm to 
(P)+/U, = 0.15 at X = 40mm and gradually decreases downstream. The growth 
from X = 5 to 20 mm was found to be exponential. At small X the distribution has 
two peaks and the Y positions of the two peaks roughly coincide with the loca- 
tions of the maxima of aU/aY at each X station. At large X the distribution is 
rather flat. The fact that ( 2 ) 3  is maximum at S = 40 mm is not an indication of 
the onset of turbulence. The wave form of the fluctuation around X = 40 mm is 
still regular and periodic. Randomness in the wave form first appears at around 
X = 800mm. The maximum root-mean-square value (2)i,, at each X station 
is plotted against X in figure 6. The streamwise variation of (>)&,, is closely 
related to the streamwise distributions of U, and b. In both figures 4 and 6 sharp 
increases take place at x < 50mm and the remarkable increase of b starting a t  
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FIGURE 4. Streamwise variations of velocity U, on the centre-line and half-value breadth b. 
0, UJU, with 600 Hz sound; 0, U$J, in natural transition; A, b with 600 Hz sound; 
A, b in natural transition. b, = half-value breadth at X = 0. 
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FIGURE 5. Fluctuation-intensity distributions with 600 Hz sound. A, 3 = 5 mm; 
V, x’ = 20 mm; 0, X = 40 mm; ., X = 400 mm; v, X = 1000 mm. 
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FIGURE 6. Streamwise variations of maximum value of fluctuation intensity at each 
A- station. 0, with 600 Hz sound; , natural transition. b, = half-value breadth at X = 0. 

around X = 600 mm corresponds to the decrease of the fluctuation intensity in 
figure 6. Intensefluctuationsdonot necessarilylead to arapid widening of the wake. 
Fluctuations at large X are more random although they are weak. These random 
fluctuations are effective in widening the wake. The curve for natural transition 
added for comparison in figure 6 is slightly lower a t  small X. The two curves 
become closer a t  large X. 

Wave forms of the velocity fluctuation are reproduced in figure 7. At 
X = 20 mm, Y = 0.5 mm the wave form is sinusoidal with a frequency of 600 Hz. 
On the centre-line a t  X = 60mm second harmonics are dominant. The wave 
forms a t  three S stations, S = 60, 150 and 600mm, are very much alike. They 
are periodic waves of the same frequency with strong second harmonics on the 
centre-line. This is another indication of nonlinear equilibrium in the region 
between X = 150 and 600mm. I n  wave forms a t  X = 800 mm both periodic and 
random components exist. At X = 1200 mm the wave forms are quite irregular 
and random, that is, a turbulent wake is established there. The randomization 
process takes place between S = 600 and 1200 mm. Wave forms a t  X = 600 mm 
in natural transition are shown in figure 8 for comparison. They are more irregular 
than the corresponding wave forms at the same X station in the presence of 
sound. Apparently, the sinusoidal sound makes fluctuations regular and delays 
the transition. 

35 F L M  67 
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FIGURE 7. Wave forms of u fluctuation with 600 Hz sound. Velocity increases upwards. 
Time increases from left to right; interval between dots, 0.01 s. 

X=600 mm, Y = 4  m m  X=600 mm. Y=O 

FIGURE 8. Wave forms of u. fluctuation in natural transition. 
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Energy spectra 

The velocity fluctuation in the transition region includes both periodic and 
random components. The energy 3 of such a fluctuation is decomposed into 

in which $ represents the discrete energy at the wavenumber kj (line spectrum) 
and E(k)dk  denotes the spectral density between k and k + d k  (continuous 
spectrum). By this definition, 

J E ( k ) d k  $. 1. 
0 

Theoretically, the separation of line and continuous spectra is possible by con- 
sidering an ideal band-pass filter which has a uniform gain between k and k + dk. 
If the output energy from the filter is proportional to dk,  we calculate the propor- 
tionality constant for E ( k ) .  On the other hand, if the output signal has a definite 
energy in the limit d k - t  0, we select a line spectrum a t  k. Experimentally, the 
separation is accomplished by comparing the measured spectrum with the 
characteristics of a narrow-band filter. Since 2 and E ( k )  differ in dimension, they 
will be shown separately. 

Line spectra 

Measurements of line spectra were made at  about 40 mesh points in the X, Y plane 
in the wake. Since it is impossible to reproduce all the spectra, the streamwise 
variations of the spectra a t  two Y positions are illustrated. One is along the centre- 
line ( Y = 0, figure 9a)  and the other is a t  Y = 4 mm, which roughly corresponds 
to the point of maximum 2 a t  each X station (figure 9 b) .  The ordinates in these 
two figures are the mean squares of discrete components as fractions of U,. The 
numbers in parentheses on the abscissae denote the order of the harmonics, 
namely, (1), (2), (3), . . . , correspond to the fundamental, second harmonics, third 
harmonics and so on. At X = 60mm we can count up to six harmonics. I n  
figure 9 ( a )  the second-harmonic component is dominant a t  X < 600mm and, 
generally speaking, even-order harmonics are stronger than odd-order harmonics. 
On the other hand, a t  off-centre positions (figure 9 b )  harmonics of odd orders 
predominate. Measurements of Y distributions of the intensities of discrete 
components reveal that on the centre-line even-order harmonics have maximum 
values, whereas odd-order harmonics have minima. Higher harmonics decay 
faster and a t  S = 1000mm only the fundamental and second harmonics are 
observed. The spectra between X = 150 and 600 mm do not change much. This 
is another indication of the equilibrium nature of the region. A remarkable 
decrease in line spectra takes place between X = 800 and 1000mm. At 
X = 1200mm the intensity of the fundamental component is only about 10-4 
times the intensity a t  3 = 60mm. The transition region ends and a turbulent 
wake is established there. 

35-2 
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FIGURE 9. Streamwise variation of various harmonic components a t  (a) Y = 0 and 
(b )  Y = 4 mm with 600 Hz sound. j = order of harmonics. 

There are no subharmonic components. This is in contrast to the findings in 
the asymmetrical shear layer, in which subharmonics are clearly observed (Sato 
1959; Browand 1966; Miksad 1972). 

Continuous spectra 
At small X the continuous spectrum is very weak compared with the discrete 
components. For instance, the wave form at X = 150 mm, Y = 4 mrn in figure 7 
is regular and periodic and the energy contained in the continuous spectrum is 
less than 1 % of the total energy. Figure 10 (a) shows the continuous spectrum 
at this point. The abscissa variable is the wavenumber k, which is given by 

k = fluctuation frequency/free-stream velocity. 

The ordinate variable, the spectral density E ( k ) ,  has an arbitrary scale but all 
spectral densities shown in this section have the same scale so that the relative 
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FIGURES 10(a, b). For legend see p. 551. 

intensities at  various points are expressed correctly. Discrete components are also 
shown in the figure by solid circles as fractions of the total energy. We notice in 
the figure that most of the random energy is contained in 'humps ' around discrete 
components. This combination of the discrete component and the hump corre- 
sponds to the random variation of the amplitude of a periodic fluctuation. To use 
the terminology of communication technology, line spectra correspond to carrier 
waves and humps to side bands. That is, the fundamental 600Hz component 
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k (m-l) 

( k  = 60 m-l) and higher harmonics are modulated by slow irregular fluctuations. 
The maximum frequency of the side band is about 200Hz ( k  = 20m-1). This 
range of frequency of the modulating signal is common to all harmonics. The 
energy a t  low wavenumbers is extremely small. Spectra measured at  different 
Y positions at  this X station are alike. 

Figure 10 ( b )  shows the spectrum at X = 400 mm, Y = 4 mm. The energy con- 
tained in the continuous part at  this point is about 30 % of the total energy. By 
comparing this with figure iO(a)  we find a remarkable increase a t  low wave- 
numbers: between k = 1 and 1Om-l. Changes in the height and width of the 
humps in the two figures are small. Changes a t  valleys between humps are also 
small. The spectrum a t  X = 800 mm, Y = 4 mm (figure 10 c) indicates a further 
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increase in the low wavenumber component and 'fusion' of humps, The magni- 
tude of the low wavenumber spectrum a t  this point is more than 100 times that a t  
X = 150 mm. The fraction of the energy in the continuous spectrum at this point 
is about 60% of the total. At X = 1200mm, Y = 6mm the wave form of the 
fluctuation is very irregular as shown in figure 7 and the energy contained in the 
continuous spectrum is more than 95 yo. The spectrum shown in figure 10 ( d )  is 
free from humps and valleys. By comparing figures 10 (c) and (d) we notice that 
the smooth spectrum at X = 1200 mm is formed by the increase in the energy at 
valleys and the decrease a t  humps. The evolution of the continuous spectrum on 
the centre-line ( Y  = 0) is similar to that shown in figures 10 (u)-(d). Figure 10 ( e )  
shows an example a t  X = 400mm. Figures 10 ( b )  and ( e ) ,  a t  different Ypositions, 
are similar except for the dominant humps around the second and fourth 
harmonics in figure lO(e) .  An example of a spectrum in natural transition is 
shown in figure 11 for comparison. I n  natural transition, line and continuous 
spectra are not distinguishable, although there are a t  least two peaks in the 
spectrum. By comparing figure 11 with figure 10 (b ) ,  we notice that the low wave- 
number components in natural transition are much larger and figure 11 is closer 
to a turbulent spectrum. In other words, the transition to a turbulent spectrum 
is hampered by the presence of sinusoidal sound. A detailed discussion of this 
aspect will be given later. 
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FIGURE 11.  Energy spectrum at X = 400 mm, Y = 4 mm in natural transition. 

4. Discussion 
The mechanism of sound-induced transition seems to be different from that of 

natural transition. The difference stems from the nature of the initial disturbance. 
Natural transition is initiated by a random small amplitude fluctuation of a 
continuous energy spectrum. Since each spectral component of the fluctuation 
grows at  a different rate, a peak is formed in the spectrum a t  the wavenumber 
with maximum growth rate as shown in figure 11. The nonIinear interaction 
between spectral components results in a smooth turbulent spectrum. When 
sound of a single frequency is introduced, both the induced sinusoidal fluctuation 
and natural fluctuation grow in the flow direction. While the amplitudes of the 
two fluctuations are small, they do not interact with each other. They grow 
independently and the spectrum consists of a discrete component and a con- 
tinuous part. Figure 12 shows a comparison of two continuous spectra around 
k = 60 m-1 in the linear region (X = 20 mm, Y = 0.5 mm) for natural and sound- 
induced transitions. Both spectra are on the same scale and coincide very well. 
This proves that the growth of the natural fluctuation in the linear region is not 
affected by sound. The wave form here is sinusoidal with a slight modulation by 
random fluctuations as shown in figure 7. This modulated sinusoidal fluctuation 
is the ‘output’ from the linear region and the ‘input ’ to the nonlinear region. 

In the nonlinear region the growth of the fluctuation is no Ionger exponential 
and higher harmonics are produced. The even-order harmonics are intense near 
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FIGURE 12. Energy spectra at X = 20 mm, Y = 0.5 mm. 0, with 600 Hz sound; 
0,  natural transition. Scale of ordinate is arbitrary. 

the centre-line, whereas odd-order harmonics are almost zero on the centre-line 
and maximum a t  certain off-centre points. These strong harmonic components 
interact with the weak random component. The extremely low level of the con- 
tinuous spectrum shown in figure 10 (b) might be a consequence of this interaction. 
I n  a previous paper (Sato 1970) the suppression of the growth of a discrete spectral 
component by the presence of another strong discrete component was pointed 
out. Stuart ( 1962) demonstrated theoretically the possibility of suppression of 
the growth of one mode due to nonlinear interaction with another mode. Miksad 
(1973) observed mode suppression in the transition region of a separated shear 
layer. By comparing figures I0 (b)  and 1 1  we notice that the cont,inuous spectrum 
in sound-induced transition is an order of magnitude smaller. This fact indicates 
that the mutual 'growth suppression' takes place not only between discrete com- 
ponents but also between discrete and random components. If a strong and 
a weak component exist, the suppression is pronounced for the weak and slight 
for the strong component. The growth of components in humps around the funda- 
mental component is high in the linear region but it is suppressed by the adjacent 
strong component in the nonlinear region. Components in valleys are very weak 
because of the low growth rate in the linear region and the suppression in the 
nonlinear region. The shape of spectra between X = 150 and 400 mm is explained 
by the first rule of nonlinear interaction; the growth of a spect,ral component is 
suppressed by the presence of other spectral components. 

Figure 13 shows the spectrum a t  X = 600 mm, Y = 4 mm. If we compare this 
figure with figure I0 ( b )  a t  X = 400 mm, we notice a remarkable increase in low 
wavenumber regions. This increase continues until X = 800mm (figure 1Oc). 
This is another consequence of nonlinear interaction. The low wavenumber 
components might be produced by the interaction between high wavenumber 
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components and possibly between the discrete fundamental component and 
continuous components in humps around it. This process is analogous to  the 
generation of low frequency components by the demodulation of a modulated 
high frequency signal. 

A simple one-dimensional model of the process of producing a low frequency 
component out of high frequency components can be constructed as follows. 
By denoting non-dimensional velocity fluctuations at X and X +AX in the flow 
by v1 = ul/Uo and v2 = u2/Uo, respectively, the nonlinear growth is expressed 
simply as 

v2-v1 = Av = a,v,+a2v2,. 

If vl < 1, Av = alvl, namely, the growth is linear. The initial fluctuation with 
discrete and continuous components is expressed as 

v, = A[l +mp(t)]sin2nfot, 

in which A is the non-dimensional amplitude of the discrete component of 
frequency fo, p( t )  is a random fluctuation with p q  = 0 andp(t)2 = 1 and m repre- 
sents the magnitude of the random part. Then v2 becomes 

- 

v2 = A( 1 +a,) (1 +mp) sin 2nf,,t 

+ a 2 A 2 [ ~ + m p + ~ m p a - g ( l  +2mp+m2p2)cos4n;f,t]. 

The first term is the linear part. By expressing pZ(t) as 

P2@)  = 1 +!I@) 
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with 8 = 0, t,he nonlinear terms become 

u2 A2[+( 1 +m2) + mp + &m2q- +(l + m2 + 3mp + m2q) cos 4n-fot]. 

If m < 1, m2q is neglected in compasison with 2mp. Then, these terms become 

&a2A2( 1 + m2) + a2 A2mp - &,A2( I + m2 + 2mp) cos 477fot. 

The first term is a d.c. component and represents the influence on the mean 
velocity, the second term is the random low frequency component and the last 
term corresponds to second harmonics modulated by random components. Since 
p(t) is not correlated with sin 27~f,,t and its harmonics, the energy spectrum of v1 
consists of a discrete component a t  f = fo and humps (side bands) E(k-  k,) and 
E(k, -k)  around it. On the other hand, the spectrum of v2 includes a low 
frequency continuous part E,(k) which corresponds to p ( k ) .  The magnitude of 
E,(k) depends on the value of a2. 

The validity of this simple model can be checked by comparing spectra a t  
humps with E,(k). If they coincide, we can conclude that the low frequency 
portions of the spectra in figures 13 and 10 (c) are produced by the interaction of 
the fundamental and random components around it. Figure 14 ( a )  shows three 
spectra a t  X = 600mm. They agree very well. The magnitude of E,(k) is shifted 
for the best agreement. Figure 1 4 ( b )  is another example a t  X = 800mm. The 
agreement is also good. 

The next question is why the process of producing low frequency components 
takes place around S = 600mm rather than at smaller 5. To answer this we 
introduce the second rule of nonlinear interaction: the nonlinear interaction pro- 
ducing components with sum and difference wavenumbers is more effective when 
the amplitudes of the interacting components are close. At small X discrete com- 
ponents are much stronger than the humps. The discrete components decay 
downstream as shown in figure 9. This decay is mainly due to energy transfer to 
the mean motion as has already been pointed out (Sato 1970). Because of the 
decay, the energy of the discrete components becomes closer to that at the humps 
and the interaction becomes more effective. 

The persistence of deep valleys between humps at large S indicates that the 
nonlinear interaction between hump components of different harmonics is weak, 
because discrete components play no part in generating components at valleys. 
The filling-up of valleys is slow compared with the production of low wavenumber 
components. This fact leads us to the third rule of nonlinear interaction: the 
interaction is more effective for components with closer frequencies (wave- 
numbers). The filling-up of valleys may be accomplished by the generation of 
components whose wavenumbers are tlhe sums of close low wavenumbers rather 
than by the production of components whose wavenumbers are the differences 
between high wavenumbers. 

The evolution of the spectrum seems to be explained by the above-mentioned 
three fundamental rules, which are applicable to interactions between discrete 
components as well as between discrete and continuous components. The ran- 
domization process in sound-induced transition is the generation of a continuous 
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FIGURE 14. Spectra of modulating signal E,(k) at  (a)  X = 600 mm and (b)  X = 800 mm, 
Y = 4 mm with 600 Hz sound. 0, direct measurement a t  low wavenumber; 8 ,  E(ko- k ) ,  
lower side band; 6 ,  E ( k - k , ) ,  upper side band. 
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FIGTJRE 15. Streamwise variations of various spectral components along positions of 
maximum uz at each X station. A, total energy u2; 0 ,  line spectrum at 600 Hz; A, 550Hz 
component; 0, 180 Hz component; 0, 40 Hz component. 
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spectrum by the interaction between the energy-containing discrete components 
and the weak continuous spectrum. 

The streamwise variations of the total energy and spectral components along 
lines of maximum 2 at each X station are shown in figure 15. The total energy 2 
decreases gradually from X = 150 to 600 mm and rapidly further downstream. 
The decay of the fundamental discrete component (600 Hz, broken line) is most 
remarkable. The relative magnitudes of the three continuous spectral components 
are expressed correctly. The 550 Hz component, which represents the energy at  
a hump, does not change much. The component at  a valley (180Hz) starts 
increasing around X = 600 mm. The low frequency component (40 Hz) increases 
by a factor of almost lo3 from X = 150 to 1200 mm. The reduction of 2 is mainly 
due to the decrease in the discrete components. Many components, but not the 
40 Hz component, do not change much between X = 150 and 600 mm. This is an 
indication of the almost equilibrium nature of the region. 

The degree of randomness of a fluctuation may be described by the ‘random- 
ness factor’, defined as the ratio of the energy contained in the continuous 
spectrum to the total energy. The streamwise variation of the randomness factor 
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FIGURE 16. Streamwise variation of randomness factor along positions of maximum u2 at 
each 3 station with 600 Hz sound. 

calculated from experimental data is shown in figure 16. This is the variation 
along lines of maximum 2 a t  each X station. The factor is zero a t  small X where 
the fluctuation is periodic. It starts increasing a t  around X = 200mm, reaches 
0.5 a t  about X = 700mm and approaches one a t  X = 1200mm. The region in 
which the randomness factor changes from zero to one may be called the random- 
ization region and the randomization may be interpreted as the growth of the 
randomness factor. Figure 16 indicates the slow randomization process in the 
wake. The region of linear growth spans only 10-20 mm, in which amplification 
by a factor of more than lo4 is accomplished, whereas the randomization region 
extends over 1000 mm. This is mainly due to the low-level residual disturbance 
in the free stream in contrast to the high-level discrete components. The effective 
nonlinear interaction takes place after the levels of the random and periodic com- 
ponents become comparable. Therefore, further reduction of the residual disturb- 
ance may result in a further delay in transition. 

5. Conclusion 
The following conclusions were obtained on the evolution of energy spectra 

during the transition process. 
(a )  As a result of nonlinear interactions an almost equilibrium state is estab- 

lished prior to the randomization of periodic fluctuations. The mean-velocity 
distribution, the fluctuation energy and the spectrum in this equilibrium region 
change very little in the flow direction. 

( b )  The growth and decay of discrete harmonic components are not monotonic 
although all harmonics disappear eventually in the fully developed turbulent 
wake. 

( c )  The first stage of the evolution of the continuous spectrum is the generation 
of low wavenumber components by the interaction of a discrete component and 



Transition in a two-dimensional wake 559 

continuous part around it (hump). The process is analogous to the demodulation 
of a modulated signal and a simple model explains the generation. 

(d )  The second stage is the decay of humps accompanied by the filling-up of 
valleys between humps. 

(e) Three fundamental rules seem to be useful for explaining the interaction 
between periodic and random spectral components. They are: (i) the growth of 
a spectral component is suppressed by the presence of other strong components, 
(ii) components whose wavenumbers are the sum and difference of two wave- 
numbers are produced at a higher rate when the amplitudes of two interacting 
components are closer, and (iii) the interaction is more effective for components 
with closer wavenumbers. 
(f) The randomness factor is defined as the ratio of the energy contained in 

the continuous spectrum to the total energy. It increases in the flow direction and 
the region in which it changes from zero to unity may be called the randomization 
region. 

(9)  Transition is delayed by the presence of sinusoidal sound. 
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